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ABSTRACT 

Structural and mechanical properties of the decapod exoskeleton affect foraging, defense, and 

locomotion. Ocean acidification (OA) poses a threat to marine biomes and their inhabitants, 

particularly calcifying organisms. Vulnerability of the snow crab, Chionecetes opilio, a 

commercially important, high-latitude species, to OA has not been explored. Although all oceans 

are experiencing acidification, abiotic factors in high-latitude areas increase the rate of 

acidification. We examined the effect of long-term (2-year) exposure to decreased seawater pH 

(7.8 and 7.5; PCO2 ~760 and 1550 µatm, respectively) on exoskeletal properties in post-terminal-

molt female C. opilio. Since the effects of OA vary among body regions in decapods, exoskeletal 

properties (microhardness, thickness, and elemental composition) were measured in five body 

regions: the carapace, both claws, and both third walking legs. Overall, adult C. opilio 

exoskeletons were robust to OA in all body regions. Decreased pH had no effect on 

microhardness or thickness of the exoskeleton, despite a slight (~6%) reduction in calcium 

content in crabs held at pH 7.5. In contrast, exoskeletal properties varied dramatically among 

body regions regardless of pH. The exoskeleton of the claws was harder, thicker, and contained 

more calcium but less magnesium than that of other body regions. Exoskeleton of the legs was 

thinner than that of other body regions and contained significantly greater magnesium 

concentrations (~2.5 times higher than the claws). Maintenance of exoskeletal properties after 

long-term OA exposure, at least down to pH 7.5, in adult C. opilio suggests that wild populations 

may tolerate future ocean pH conditions. 

INTRODUCTION 

The absorption of anthropogenic CO2 has caused oceanic pH levels to decrease by ~0.1 units 

since the beginning of the industrial revolution (Caldeira and Wickett, 2003; Orr et al. 2005; 

Doney et al. 2009; Doney et al. 2020; Leung et al. 2022). This phenomenon, known as ocean 

acidification (OA), is predicted to persist and cause pH in ocean surface waters to drop another 

~0.3 units by 2100 and ~0.5 units by 2200 (Caldeira and Wickett 2003; Orr et al. 2005; IPCC 

2014; Gattuso et al. 2015). Reduced pH of seawater, along with associated changes in carbonate 

chemistry, can significantly decrease survival and growth in myriad marine taxa, with calcified 
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algae, corals, and mollusks standing out as the most vulnerable (Kroeker et al. 2010; Kroeker et 

al. 2013). Although crustaceans were not initially believed to be particularly vulnerable to the 

effects of OA (Kroeker et al. 2010, 2013; Whittman and Pörtner 2013; Byrne and Fitzer 2019), 

recent studies with larval and juvenile crustaceans have demonstrated that elevated pCO2 levels 

can increase mortality (Miller et al. 2016; Giltz & Taylor 2017, Long et al. 2021), reduce growth 

(Swiney et al. 2017; McLean et al. 2018), and alter energetics (Long et al. 2019) and behavior 

(Gravinese et al. 2019). In addition, at all crustacean life stages, OA has been shown to alter the 

formation and maintenance of the mineralized exoskeleton (Taylor et al. 2015; Meseck et al. 

2016; Glandon et al. 2018; Bednaršek et al. 2020; Dickinson et al. 2021; Siegel et al. 2022), 

potentially limiting the defensive, predatory, and locomotive abilities of these organisms (Page et 

al. 2016; Coffey et al. 2017). Much of the OA research studying physiological and ecological 

responses of crustaceans to decreased pH has involved only short-term (~30 days) to medium-

term (~ 6 month) exposure to OA; however, many crustaceans can live for a decade or longer, 

which makes long-term exposure experiments critically important (Whiteley 2011; Siegel et al. 

2022). 

There have been relatively few studies explicitly exploring the effect of OA on structural and 

mechanical properties of the mineralized decapod exoskeleton. The exoskeleton protects animals 

from both environmental (e.g., desiccation, hydrodynamic or mechanical forces) and predatory 

risks and, in the case of the claws (chelae) and mandibles, is critical for capturing, subduing, and 

consuming prey. The crab exoskeleton is multilayered, consisting of an outer epicuticle, a 

procuticle composed of an outer exocuticle and inner endocuticle, and a thin, uncalcified 

membranous inner layer (Travis 1963; Roer and Dillaman 1984). The exo- and endocuticle are 

formed by chitin-protein nanofibrils interlacing to create helical structures known as 

“Bouligand” or “twisted plywood” layers, which are embedded with nanocrystalline magnesian 

calcite or amorphous calcium carbonate (Bouligand 1972; Roer and Dillaman 1984; Raabe et al. 

2006; Boßelmann et al. 2007). When the mechanical properties of the cuticle are compromised, 

vital functions such as foraging, defense against predators, and locomotion, can suffer reductions 

in performance efficiency (Juanes and Hartwick 1990). The cuticle provides muscle-attachment 

sites in many regions of the body, making the functionality of appendages contingent on its 

integrity (Meyers et al. 2013). Observed effects of OA include reduced microhardness (resistance 
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to  permanent  or  plastic  mechanical  deformation)  in  the  claws—but  notably  not  in  the  carapace— 

of  decapods;  this  could  compromise  the  ‘crushing’  abilities  of  the  claws,  potentially  diminishing  

defense  and  foraging  abilities  (deVries  et  al.  2016;  Coffey  et  al.  2017;  Dickinson  et  al.  2021).  In  

order  to  thoroughly  investigate  how  this  complex  exoskeletal  structure  is  responding  to  our  

rapidly  changing  ocean,  more  body-region-specific  analyses  must  be  conducted  on  decapod  

species.  

  

Although  the  entire  ocean  is  absorbing  atmospheric  CO2  and  experiencing  acidification,  high-

latitude  regions  are  likely  to  acidify  faster  than  lower-latitudes  regions  due  to  the  higher  

solubility  of  CO2  in  colder  waters  (Fabry  et  al.  2009;  Cumming  et  al.  2011).  The  Bering  Sea  has  

a  set  of  environmental  conditions  that  make  its  waters  particularly  vulnerable  to  OA  (Opsahl  and  

Benner  1997;  Pilcher  et  al.  2019).  The  low  temperatures,  poorly  buffered  water,  and  high  climate  

variability  in  this  region  are  just  some  of  the  factors  that  make  the  Bering  Sea  a  research  priority  

in  terms  of  potential  biological  responses  to  OA  (Mathis  et  al.  2011a).    

The  snow  crab,  Chionoecetes  opilio,  is  one  of  the  many  valuable  commercial  species  that  inhabit  

the  Bering  Sea.  It  has  a  distribution  that  spans  the  northern  Pacific  and  Atlantic  Oceans,  and  the  

Arctic  Ocean  (Jadamec  et  al.  1999).  In  the  Bering  Sea,  snow  crabs  are  distributed  along  the  

continental  shelf  and  upper  slope,  with  most  individuals  occurring  at  50–200  m  (Zacher  et  al.  

2020).  The  lifespan  of  snow  crabs  is  estimated  at  14–16  years  for  males,  and  11–12  years  for  

females,  making  them  a  relatively  long-lived  decapod  species  (Adams,  1979).  Both  male  and  

female  snow  crabs  can  live  3–5  years  after  completing  their  terminal  molt  and  reaching  sexual  

maturity  (Alunno-Bruscia  &  Sainte-Marie  1998;  Ueda  et  al.  2009).  In  Alaska,  snow  crabs  have  

supported  valuable  fisheries,  bringing  in  an  ex-vessel  revenue  of  $101.7  million  in  2020  (Garber-

Yonts  and  Lee,  2020;  NOAA  Fisheries  2021).  Understanding  how  future  ocean  conditions  will  

impact  Alaskan  snow  crab  populations  is  essential  to  protecting  these  stocks  from  possible  

overharvest  (ADF&G  1991).   

Carbonate  chemistry  in  snow  crab  habitat  varies  both  seasonally  and  spatially.  Currently,  

seasonal  stratification  combined  with  benthic  remineralization  results  in  pCO2  values  dropping  

from  late  summer/early  fall  highs  of  1600  µatm  (pH  about  7.5)  to  about  400  (pH  8.1)  in  the  

winter  when  storms  mix  surface  waters  down  (Mathis  et  al.  2014).  Similarly,  across  the  Bering  
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Sea  shelf,  aragonite  saturation  states  in  the  summer  grade  from  greater  than  2  (pH  about  8)  in  

shallow  water  at  60  m  or  less,  to  below  1  (pH  about  7.8)  at  depths  below  100  m  (Mathis  et  al,  

2011b).  Projections  for  the  greater  Bearing  Sea  shelf  show  that  average  shelf  pH  is  currently  

below  7.8  for  about  half  the  year  and  below  7.5  for  a  negligible  amount  of  time,  but  this  will  

grade  to  being  below  7.8  for  about  90%  of  the  year  and  below  7.5  for  40%  of  the  year  by  2100  

(Pilcher  et  al.  2022).  

The  effects  of  OA  on  exoskeletal  properties  have  not  been  assessed  previously  in  snow  crabs.  

Previous  work  on  a  congeneric  species,  the  southern  Tanner  (hereafter  Tanner)  crab  

Chionoecetes  bairdi,  however,  revealed  high  susceptibility  of  the  adult  exoskeleton  to  OA  

(Dickinson  et  al.  2021).  Two-year  exposure  to  OA  conditions  resulted  in  thinning  of  the  cuticle,  

internal  and  external  dissolution,  reduction  in  claw  hardness,  and  alterations  in  mineralogy  of  the  

carapace.  Hence,  the  goal  of  this  study  was  to  assess  the  effects  of  ocean  acidification  on  

exoskeletal  properties  of  adult  snow  crab,  C.  opilio.  Post-terminal-molt  female  snow  crabs  were  

held  in  ambient  (~8.1)  or  reduced  pH  seawater  (7.8  and  7.5)  for  a  period  of  two  years.  We  then  

evaluated  microhardness  and  thickness  of  the  two  major  structural  layers  of  the  cuticle,  the  

endocuticle  and  exocuticle,  within  five  different  body  regions:  the  carapace,  left  and  right  claws,  

and  left  and  right  third  walking  legs.  Elemental  composition  in  each  body  region  was  also  

assessed.  These  assessments  are  crucial  because  variations  in  mechanical,  elemental,  and  

structural  properties  of  the  exoskeleton  can  lead  to  differences  in  functionality.   
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MATERIALS  AND  METHODS  

Overview  

The  work  presented  here  is  part  of  a  broader  project  examining  the  effects  of  OA  on  snow  crabs,  

Chionoecetes  opilio.  In  brief,  ovigerous  snow  crab  were  held  in  the  laboratory  for  two  years  

through  two  brooding  cycles,  and  embryonic  development  and  hatching  successes  were  

monitored.  After  eggs  hatched  in  the  first  year,  the  same  adult  females  were  provided  with  a  

male  to  mate  with  and  they  extruded  a  second  clutch  of  embryos.  All  females  used  for  

exoskeleton  assessments  brooded  two  clutches  of  eggs,  one  per  year,  for  each  of  two  years;  there  

were  no  differences  in  reproductive  output  among  treatments.  Each  year,  larvae  that  hatched  
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were used in a series of experiments to determine the effects of OA on the larval phase. At the 

end of the second year, the adult crabs were sacrificed and samples were taken to examine the 

effects of OA on the exoskeleton of the females. The results of the embryonic and larval studies 

are presented elsewhere (Long et al., 2022a & b). Sample preparation, and mechanical, 

structural, and elemental testing generally followed Dickinson et al. (2021), with an expansion of 

the number of body regions and exoskeletal layers assessed. 

Animal collection and OA exposure 

Mature female snow crabs, Chionoecetes opilio, were collected from the Bering Sea during the 

eastern Bering Sea trawl survey (Daly et al. 2014) and transported to the NOAA Alaska Fisheries 

Science Center’s Kodiak Laboratory. Upon arrival and throughout the experiment, crabs were 

held in flow-through, sand-filtered seawater at ambient salinity from Trident Basin (intakes 15 

and 26 m) chilled to 2°C with recirculating chillers. Crabs were fed to excess twice a week on a 

diet of chopped squid and herring. After a brief holding period, 25 crabs were randomly assigned 

to each of three pH treatments: ~8.1 (ambient), 7.8, or 7.5. Two different holding systems were 

used during this experiment during different parts of the brooding cycle; however, in both 

systems the holding conditions were the same, with water acidified with the addition of CO2, 

temperatures chilled to a constant 2°C, and flow through seawater at ambient salinity. During the 

majority of the brooding cycle, crabs were held in experimental tanks (0.6 x 1.2 x 0.6 m), one per 

treatment. During this period, water was acidified per Long et al. (2013a). In brief, water was 

acidified by mixing ambient seawater with seawater from a super-acidified tank (pH 5.5, 

acidified via bubbling of CO2) in head-tanks (one per treatment). The ambient-treatment head-

tank contained only ambient water with no input from the super-acidified tank. Super-acidified 

water was mixed into acidified head-tanks via peristaltic pumps that were regulated by 

Honeywell controllers and Durafet III pH probes placed inside the head tanks (see Long et al. 

2013a for a diagram of this system). As embryos neared hatching, adult female crabs were 

moved into individual 68-L tubs. This was necessary so that the number of larvae hatched from 

each female could be counted (see Long et al. 2022a for details). Tubs received recirculating 

flow from 2000-L tanks that received flow-through water that was acidified by direct bubbling of 

CO2 controlled by a Durafet III pH probe (Fig. S1). Although this design, holding crabs in a 

single tank for each treatment, or in individual tubs with water recirculating from a common 
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 pH   8.1  pH  7.8  pH  7.5 

 pHF  8.11  ± 0.08   7.80  ± 0.02   7.50  ± 0.02  

 Temperature   (°C)  2.09  ± 0.32   1.97 ±  0.30   2.05 ±  0.31  

180

185

190

195

200

205

head  tank,  is  technically  pseudoreplication,  there  is  no  known  mechanism  by  which  the  presence  

of  other  crabs  might  have  affected  the  exoskeleton  of  each  other  and  we  ignore  tank  affects  in  all  

analyses.  Both  of  the  experimental  setups  supplied  crabs  with  water  at  the  same  temperatures  

and,  in  acidified  treatments,  with  water  acidified  with  CO2  to  the  same  pH  and  using  the  same  

feedback  mechanism.  In  addition,  all  crabs  were  transferred  between  the  setups  at  the  same  time  

negating  any  potential  bias  caused  by  the  two  different  sets  of  holding  conditions.  

Temperature  and  pH  (free  scale)  were  measured  in  experimental  units  daily  using  a  Durafet  III  

pH  probe  calibrated  with  TRIS  buffer  (Millero  1986).  Water  from  the  head  tanks  was  sampled  

once  per  week  (N  =  98  per  treatment)  and  samples  were  poisoned  with  mercuric  chloride  and  

analyzed  for  dissolved  inorganic  carbon  (DIC)  and  total  alkalinity  (TA)  at  an  analytical  

laboratory.  DIC  and  TA  were  determined  using  a  VINDTA  3C  (Marianda,  Kiel,  Germany)  

coupled  with  a  5012  Coulometer  (UIC  Inc.)  according  to  the  procedure  in  DOE  (1994)  using  

Certified  Reference  Material  from  the  Dickson  Laboratory  (Scripps  Institute,  San  Diego,  CA,  

USA;  Dickson  et  al.  2007).  The  other  components  of  the  carbonate  system  were  calculated  in  R  

(V3.6.1,  Vienna,  Austria)  using  the  seacarb  package  (Lavigne  and  Gattuso  2012).  Crabs  were  

held  in  experimental  conditions  for  two  years  and  were  monitored  for  mortality  daily.  At  the  end  

of  the  two-year  exposure  period,  surviving  crabs  were  sacrificed  and  cuticle  samples  were  taken  

and  kept  frozen  at  -80°C.  The  total  number  of  surviving  crabs  was  4  in  the  ambient  treatment,  13  

in  the  pH  7.8  treatment,  and  10  in  pH  7.5  treatment.   Samples  were  transported  on  dry  ice  to  The  

College  of  New  Jersey  (Ewing,  NJ)  for  analysis.  All  samples  remained  frozen  during  transit  and,  

upon  arrival,  were  kept  at  -70°C  until  further  use.  

Table  1.  Seawater  chemistry  parameters.  pH  and  temperature  were  measured  daily  (N=681  per  

treatment).  Dissolved  inorganic  carbon  (DIC)  and  alkalinity  were  measured  weekly  (N=98  per  

treatment).  Other  parameters  were  calculated  (see  Materials  and  Methods).  pHF,  pH  on  the  free  

proton  scale;  ΩCalcite,  calcium  carbonate  saturation;  SW,  sea  water.  Data  are  means  ±  SD.   
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PCO2 (μatm) 362.18 ± 68.33 760.98 ± 43.95 1548.29 ± 102.11 

DIC (mmol kg−1 SW) 2.01 ± 0.04 2.09 ± 0.05 2.15 ± 0.06 

HCO3− (mmol kg−1 SW) 1.90 ± 0.05 2.00 ± 0.04 2.04 ± 0.06 

2-CO3 (mmol kg−1 SW) 0.09 ± 0.02 0.05 ± 0.00 0.02 ± 0.00 

Total alkalinity (µmol kg−1 SW) 2110 ± 20 2090 ± 20 2110 ± 20 

ΩCalcite 2.19 ± 0.37 1.11 ± 0.06 0.57 ± 0.04 

206 

207 Sample  Preparation   

Cuticle  samples  were  taken  from  standardized  locations  in  five  body  regions:  the  carapace,  both  

claws,  and  both  third  walking  legs.  From  each  crab  and  each  body  region,  two  cuticle  samples  

were  cut  using  a  water-cooled  diamond  band-saw  (Gryphon,  C-40);  one  of  these  was  embedded  

in  epoxy  resin  and  polished  for  micromechanical  and  structural  assessments  while  the  other  was  

used  for  elemental  analyses.  All  segments  were  lyophilized  for  ~18  hours  (Yamato,  DC41‐A)  

immediately  after  cutting.  Within  the  carapace,  the  two  segments  were  cut  immediately  adjacent  

to  one  another,  both  taken  from  the  posterior  margin.  For  left  and  right  claws,  the  dactylus  

(movable  finger)  and  pollex  (fixed  finger)  were  cut  from  the  manus;  dactyli  were  embedded  and  

used  for  micromechanical  and  structural  assessments  while  pollexes  were  used  for  elemental  

analyses.  Similarly,  for  the  left  and  right  legs,  the  most  distal  segment  (the  dactyl  or  

dactylopodite)  was  embedded  and  used  for  micromechanical  and  structural  assessments  while  

the  segment  proximal  to  this  (the  propodus  or  propodite)  was  used  for  elemental  analyses.  Note  

that  a  portion  of  the  crabs  were  missing  a  claw  or  third  walking  leg  at  the  end  of  the  experimental  

exposure  so  samples  could  not  be  taken;  for  consistently,  other  legs  were  not  substituted  for  the  

third  walking  leg.   

 

Cuticle  segments  to  be  used  in  micromechanical  and  structural  analyses  were  embedded  

individually  in  epoxy  resin  (Allied  High  Tech,  Epoxy  Set),  ground,  and  polished  as  described  in  

Coffey  et  al.  (2017)  and  Dickinson  et  al.  (2021).  Samples  were  ground  and  polished  on  a  

grinding/polishing  machine  (Allied  High  Tech,  M-Prep  5  or  Met-Prep3  PH-4).  Grinding  steps  

employed  a  series  180,  320,  600  and  800  grit  silicon  carbide  papers,  followed  by  polishing  with  a  
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1 μm diamond suspension and a 0.04 μm colloidal silica suspension until the samples were 

completely smooth and free of scratches. Griding and polishing was used to produce a cross-

section along the anterior-posterior axis of carapace samples (normal to the dorsal surface of the 

carapace), while grinding/polishing of claw and leg dactyl samples produced a cross-section 

along the longest (longitudinal) axis. Polished samples were stored in a desiccator until testing. 

Micromechanical properties 

Vickers microhardness testing was conducted on embedded and polished samples. Testing was 

conducted on a microindentation hardness tester (Mitutoyo, HM-200) following standard 

procedures (ASTM 2017). Indents were made at 1 g load, 5 s dwell time. Two series of indents 

were made: one in the endocuticle and one in the exocuticle. The two cuticle layers could be 

readily differentiated from one another on the hardness tester (under reflected light), as there was 

a dramatic difference in the thickness of Bouligand layers when moving from the endocuticle to 

the exocuticle (i.e., layers were more densely packed in the exocuticle). Within each layer, 10 

replicate indents were made, with the first indent approximately 500 μm from the edge of the 

sample and each subsequent indent spaced about 200 μm apart. For leg (dactylopodite) samples, 

the most distal tip of the sample was avoided, as cuticle wear and damage was visible in many 

samples. Individual indents were measured directly on the hardness tester under a 100 X 

objective and Vickers microhardness values were automatically calculated. Microhardness of 

replicate indents within a sample and within a cuticle layer were averaged to determine the mean 

microhardness for each sample. 

Cuticle thickness 

Following microhardness testing, the same embedded samples were used to quantify four 

structural metrics: total thickness of the cuticle, exocuticle thickness, endocuticle thickness, and 

thickness of individual Bouligand layers that comprise the endocuticle. Samples were imaged 

under a reflected light microscope (Zeiss, AxioScope A1 with a Zeiss, AxioCam 105 color 

camera) using a 2.5 X objective (~100 X total magnification) and darkfield illumination. 

Panoramic images of the entire sample were constructed using the camera’s analysis software 

(Zeiss, Zen v. 2.3; Fig. S2). Thickness was measured on digital images following the methods of 

Nardone et al. (2018) and Coffey et al. (2017). A grid was placed on each image (200 x 200 µm 

9 



 

 

                 

                 

            

              

                

                 

               

                 

               

               

           

               

                

             

               

              

                 

               

               

              

           

  

    

             

            

              

                 

                  

               

                    

                

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

for carapace samples; 500 x 500 µm for claw and leg samples) and cuticle thickness was 

measured using a linear line tool each time the grid crossed the sample. Total thickness and 

endocuticle thickness were measured separately at each point; exocuticle thickness was 

calculated as the difference between total and endocuticle thickness. The endo- and exocuticle 

layers were differentiated from one another based on the thickness of Bouligand layers (Roer and 

Dillaman 1984); there was a distinct shift when moving from the endocuticle to the exocuticle in 

Bouligand layer thickness (i.e., layers were thinner and more densely packed in the exocuticle; 

Fig. S2). This resulted in a clear shift in coloration under darkfield illumination. At least 10 

replicate measurements were made for each parameter within each sample, with the total number 

of measurements dependent on the size of the sample. Replicate measurements for each metric 

(total thickness, exocuticle thickness, endocuticle thickness) were averaged separately to 

determine the mean for each sample. Thickness of the Bouligand layers that comprise the 

endocuticle was measured by taking three additional images of the endocuticle under a 50 X 

objective (~1,600 X total magnification) and brightfield illumination. The three images were 

spaced roughly evenly along the length of the polished sample. Within each image, three 

separate distance lines were drawn perpendicular to the Bouligand layers using the camera’s 

analysis software; each line spanned 10 distinct Bouligand layers. The total length of the line was 

divided by 10 to determine average thickness of individual Bouligand layers. The 9 replicate 

measurements (3 images with 3 measurements per image) were averaged to determine the mean 

Bouligand thickness for each sample. A similar procedure was attempted within the exocuticle, 

but the density of Bouligand layers precluded accurate measurements. 

Elemental composition 

Elemental composition was measured at the U.S. Geological Survey’s Coastal and Marine 

Science Center, St. Petersburg, FL. Inductively coupled plasma optical emission spectrometry 

(ICP-OES) was used to measure calcium, magnesium, and strontium content within the carapace, 

right and left claws, and right and left third walking leg. Methods followed those described in 

Gravinese et al. (2016) and Steffel et al. (2019). Samples were cut from each body region, as 

described above, and any adhering tissue was removed using a scalpel and forceps. Samples 

were first oxidized by sonication in a 1:1 mixture of 30% H2O2 and 0.1 M NaOH for 20 minutes. 

This was followed by sonication in Milli-Q water for 5 minutes. This oxidation procedure was 
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repeated before samples were removed from solution and dried overnight at 90°C. Dried samples 

were ground into a fine powder by mortar and pestle, and the oxidation process described above 

was repeated on the powdered samples. Oxidized samples were dried again at 90°C for at least 3 

hours before analyses. Samples were weighed and acidified in 2% HNO3, then measured for 

Ca2+ , Mg2+, and Sr2+ using a PerkinElmer 7300 dual‐view ICP–OES. Elemental weight-

percentages were calculated for each sample by multiplying concentration by the volume of 

HNO3 added prior to ICP‐OES analysis, and then dividing by the total dry weight of the sample 

using the conversion 1 ppm = 1 mg/L (Long et al., 2013b). 

Statistical analysis 

The exoskeletal properties of C. opilio were assessed using a combination of multivariate and 

univariate statistical procedures. Multivariate approaches incorporated all measured variables to 

assess the effect of seawater pH on exoskeletal properties, as well as if these properties varied 

among body regions. Variables were normalized (expressed in terms of their z value) before 

multivariate analysis and visualized with a non-metric multidimensional scaling (nMDS) plot 

based on a Euclidian-distance resemblance matrix. Differences among treatments were then 

analyzed with a permutational analysis of variance (PERMANOVA) with treatment fully crossed 

with body region and crab identification number (unique to each individual crab) nested within 

treatment as factors. Differences in dispersion were analyzed with a permutational analysis of 

dispersion (PERMDISP) in order to help differentiate between effects of differences in data 

location and dispersion. These analyses were followed by a principal component analysis (PCA) 

and SIMPER analysis, which were used to identify the factors driving differences among body 

regions. Multivariate analyses were conducted using Primer (v. 7, Primer-E). The effect of 

seawater pH and body region on each individual micromechanical, structural, or elemental 

variables was assessed using a general linear model (GLM) for each variable, followed by Tukey 

HSD post hoc testing. Treatment pH and body region were treated as fixed factors; crab 

identification number was used as a blocking factor, with crab identification number nested 

within treatment pH. Univariate analyses were conducted in SPSS (v. 25, IBM Analytics). For 

nMDS, PERMANOVA, PERMDISP, and PCA data for each individual body region (i.e., 

carapace, left claw, right claw, left leg, right leg) was included separately within the analyses. 

Data from the two claws and two legs were combined for SIMPER and univariate analyses. All 
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datasets generated during the current study are available as a supplemental document and sample 

sizes for structural, mechanical and chemical analyses are included in Table S1. 

RESULTS 

Exoskeletal properties of snow crabs differed among body regions but not among pH treatments 

(PERMANOVA, Table S2). Dispersion, a measure of spread in multivariate data analogous to 

variance in univariate statistics, differed among body regions (pseudoF = 2.755, p = 0.033), but 

not pH treatments (pseudoF = 0.829, p = 0.440) or crabs (pseudoF = 0.661, p = 0.860). When 

both PERMDISP and PERMANOVA are significant, this indicates that either just the dispersion 

differs among treatments or that both dispersion and location (multivariate analog for the mean) 

differ; examination of an nMDS plot can help to distinguish between these two possibilities 

(Anderson et al. 2008). The nMDS plot showed clear differences among sampled body regions 

with legs, claws, and the carapace all separating from one another and having virtually no 

overlap; from this we conclude that the significant PERMANOVA was driven by differences in 

both location and dispersion (Fig. 1A). Conversely, there were no differences among pH 

treatments (Fig. 1B), at least under the experimental conditions and sample size tested here. Post-

hoc pairwise comparisons (PERMANOVA) showed that each body region differed significantly 

from all other body regions (p < 0.05), except that the left and right legs were not significantly 

different from one another. Of note, and as shown in in Fig. 1A, post-hoc pairwise comparisons 

show a significant difference between the left and right claws (p < 0.05), although there is some 

overlap of the two in the nMDS plot (Fig. 1A). 
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345 Fig.  1.  Non-metric  multidimensional  scaling  (nMDS)  plots  incorporating  micromechanical,  

structural,  and  elemental  variables.  The  same  plot  is  coded  by  either  (A)  body  region  or  (B)  pH  

treatment.  Data  were  normalized  prior  to  analysis  (see  text  for  details).  Stress  is  0.14.  

 

Principal  component  analysis  (PCA)  was  used  to  visualize  which  factors  drove  the  differences  

among  body  regions  and  SIMPER  analysis  was  used  to  quantify  the  differences  (Fig  2;  Table  

S3).  In  general,  the  exoskeleton  of  claws  was  thicker,  harder,  and  had  higher  calcium  content  

(but  lower  magnesium  content)  than  that  of  the  carapace  and  legs.  The  carapace  exoskeleton  was  

thicker  but  less  hard  than  that  of  the  legs.  Magnesium  content  tended  to  be  highest  in  the  legs.    
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354 

355 Fig.  2.  Principal  component  plot  of  observations  of  exoskeletal  properties  (microhardness,  

elemental  content,  and  structure)  among  body  regions.  Data  were  normalized  prior  to  analysis  

(see  text  for  details).  Vectors  indicate  the  loadings  of  the  variables.  PC1  and  PC2  contain  46%  

and  20%  of  the  overall  variance,  respectively.  
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generally  in  agreement  with  multivariable  assessments  showing  a  strong  effect  of  body  region,  

but  minimal  effect  of  seawater  pH,  on  exoskeletal  properties.  Seawater  pH  did  not  affect  

microhardness  in  either  the  endocuticle  or  exocuticle  (GLM:  p  >  0.05;  Fig.  3  &  Tables  S4  &  S5).

Microhardness,  however,  varied  among  body  regions  for  both  cuticle  layers  (GLM:  p  <  0.0001).  

Endocuticle  microhardness  of  the  claws  was  73%  greater  than  that  of  the  carapace  and  38%  

greater  than  the  legs  (Tukey  HSD:  p  <  0.05).  Exocuticle  hardness  was  ~60%  greater  in  the  claws  

and  legs  as  compared  to  the  carapace  (Tukey  HSD:  p  <  0.05)  but  did  not  differ  significantly  
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369 between  the  claws  and  legs.  The  interaction  of  pH  and  body  region  was  not  significant  for  either  

layer.  370 

371 

372 Fig.  3.  Vickers  microhardness  tested  in  the  C.  opilio  exocuticle  (A)  and  endocuticle  (B)  after  

exposure  to  one  of  three  pH  levels  for  2  years.  Means  ±  SE  are  shown.  Different  letters  represent  

significant  pairwise  differences  between  body  regions  (Tukey  HSD:  p  <  0.05).  pH  treatments  did  

not  differ  from  one  another.  N  =  3–22.   
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377 Treatment  pH  did  not  affect  any  of  the  structural  variables  assessed  (GLM:  p  >  0.05;  Fig.  4  &  

Tables   S4  &  S5),  but  the  effect  of  body  region  was  significant  in  all  cases  (GLM:  p  <  0.0001).  

For  total  cuticle  thickness  and  endocuticle  thickness,  each  body  region  differed  from  each  other  

region  (Tukey  HSD:  p  <  0.05;  Fig.  4A  &  C);  total  thickness  was  greatest  in  the  claw,  

intermediate  in  the  carapace,  and  lowest  in  the  legs.  Exocuticle  thickness  showed  the  opposite  

response,  with  thickness  lower  in  the  claws  as  compared  to  the  carapace  and  legs  (Tukey  HSD:  p  

<  0.05;  Fig.  4B).  Thickness  of  the  Bouligand  layers  that  comprise  the  endocuticle  differed  among  

each  body  region,  with  Bouligand  layer  thickness  greatest  in  the  claws  and  lowest  in  the  carapace  

(Tukey  HSD:  p  <  0.05;  Fig.  4D).  The  interaction  of  pH  and  body  region  was  not  significant  for  

any  of  the  structural  variables  assessed.    
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Fig. 4. Structural variables measured in the C. opilio cuticle after exposure to one of three pH 

levels for 2 years. Means ± SE are shown. Different letters represent significant pairwise 

differences between body regions (Tukey HSD: p < 0.05). pH treatments did not differ from one 

another. N = 3–22. 

Unlike other measured variables, there was a slight, but significant, effect of treatment pH on 

calcium and magnesium content (GLM: p < 0.05; Fig. 5A–B & Table S4). Calcium content was 
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395 ~6%  greater  in  crabs  held  at  pH  8.0  and  7.8  as  compared  to  those  at  pH  7.5  (Tukey  HSD:  p  <  

0.05).  Magnesium  content  differed  between  the  pH  7.8  and  pH  7.5  treatments,  with  magnesium  

content  about  8%  higher  at  pH  7.5  (Tukey  HSD:  p  <  0.05).  Overall,  the  effect  of  pH  treatment  on  

strontium  content  was  not  significant  (GLM:  p  =  0.075;  Fig.  5C  &  Tables  S4  &  S5).  The  effect  

of  body  region  was  significant  for  all  elemental  variables  assessed  (GLM:  p  <  0.0001;  Fig.  5  &  

Table  S4).  Among  body  regions,  each  body  region  differed  from  each  other  body  region  for  

calcium  and  magnesium  content  (Tukey  HSD:  p  <  0.05).  Calcium  content  was  greatest  in  the  

claws,  intermediate  in  the  carapace,  and  lowest  in  the  legs  with  calcium  content  in  the  legs  about  

half  that  of  the  claws.  In  contrast,  magnesium  content  was  greatest  in  the  legs,  intermediate  in  the  

carapace,  and  lowest  in  the  claws;  magnesium  content  was  2.5  times  greater  in  the  legs  than  the  

claws.  Strontium  content  was  greater  in  the  claws  as  compared  to  the  legs  and  carapace  (Tukey  

HSD:  p  <  0.05),  but  did  not  differ  between  the  legs  and  carapace.  The  interaction  of  pH  and  body  

region  was  not  significant  for  calcium,  magnesium,  or  strontium  content.   
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409 Fig.  5.  Elemental  content  measured  in  the  C.  opilio  cuticle  after  exposure  to  one  of  three  pH  

levels  for  2  years.  Means  ±  SE  are  shown.  Letters  denote  significant  pairwise  differences  

between  body  regions  and  brackets  represent  significant  pairwise  differences  between  pH  

treatments  (Tukey  HSD:  p  <  0.05).  N  =  3–22.  
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In  this  study,  we  quantified  the  effects  of  OA  on  adult  snow  crab  exoskeletons  in  multiple  body  

regions  after  a  two-year  exposure  in  order  to  understand  how  future  ocean  conditions  might  

influence  activities  crucial  to  survival  such  as  feeding,  defense,  and  locomotion.  Multivariate  
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analyses of all measured variables and body regions showed no effect of exposure pH on the 

exoskeletal properties of C. opilio, at least under the experimental conditions (reduced pH 7.8 

and 7.5) and sample sizes tested here. Although there was a slight (~6%) decrease in exoskeletal 

calcium content at reduced seawater pH (7.5), microhardness and thickness were unaffected by 

decreased pH at any level, suggesting that this difference may have little practical consequence. 

On the other hand, there were substantial differences among the body regions, which highlights 

that the structural and mechanical properties of the decapod exoskeleton are well-adapted to the 

physical demands placed on those particular body regions. In contrast to other decapod species 

(e.g., Coffey et al. 2017; Dickinson et al. 2021), it appears that adult snow crabs are relatively 

resilient to the effects of reduced pH in terms of exoskeletal properties. 

Since decapods use calcium carbonate, in the form of nanocrystalline magnesian calcite or 

amorphous calcium carbonate, to harden their exoskeletons (Roer and Dillaman 1984; Dillaman 

et al. 2005), it is possible that changes in seawater carbonate chemistry could affect both the 

formation and maintenance of their cuticles (Siegel et al. 2022). There are three primary 

mechanisms by which reduced pH could affect the decapod exoskeleton. First, if the calcium 

carbonate saturation state of seawater (Ω) drops below 1 then external (abiotic) dissolution could 

occur (i.e. thermodynamically, dissolution is favored; Waldbusser et al. 2016). In decapod 

crustaceans, the epicuticle, the predominantly organic (wax and protein) outermost layer of the 

cuticle (Roer and Dillaman, 1984; Fabritius et al., 2012), effectively protects the calcified cuticle 

layers from direct contact with seawater (Ries et al. 2009). Hence, external dissolution would be 

restricted to either sites where the epicuticle had been damaged or sites, such as on the denticles 

on the claws, where the epicuticle has been worn off by constant use (Rosen et al. 2020; 

Dickinson et al. 2021). Second, shifts in environmental pH can cause changes in the hemolymph 

pH of decapods in the short-term, and the extent to which these changes are compensated for can 

vary among species (Pane and Barry, 2007). If osmoregulatory functions, which are the primary 

means by which decapods maintain acid-base balance in their hemolymph (Melzner et al. 2009; 

Whitely 2011), are unable to completely compensate for the change in pH, a prolonged decrease 

in hemolymph pH could make it more difficult to precipitate calcium carbonate during shell 

formation or lead to internal dissolution of the exoskeleton. It is important to note, however, that 

most decapods that are able to maintain acid-base homeostasis under ocean acidification 
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conditions do so, at least in part, by buffering their hemolymph with bicarbonate via Cl-/HCO3
-

exchange at the gills (Pane and Barry 2007; Whiteley 2011, Appelhans et al. 2012). This 

response could make precipitation of calcium carbonate more likely, and could explain why 

many decapods show increased calcification rates or content in response to ocean acidification 

(Ries et al. 2009; Long et al. 2013b; Glandon et al. 2018). Finally, ocean acidification can induce 

changes in the expression of genes involved in cuticle formation; red king crab adults and 

juveniles both exhibited an increase in the expression of such genes (Stillman et al. 2020). The 

findings of this study, showing that the micromechanical and structural properties of the snow 

crab were not altered by exposure to decreased pH levels, suggests that snow crabs may be 

relatively resistant to long-term exposure to reduced pH. Thus, post-terminal molt snow crabs 

may possess a largely in-tact epicuticle, have strong acid-base regulatory capacity, are able to 

alter their gene expression to maintain their cuticles, or a combination of these traits. Future 

experiments should examine the physiological response and gene expression patterns in snow 

crab to elucidate the mechanism(s) of exoskeletal growth and maintenance. 

Elemental analysis of the exoskeleton revealed a slight, but significant, reduction in calcium 

content and increase in magnesium content in crabs exposed to pH 7.5. This shift in elemental 

composition of the carapace also increased the Mg2+:Ca2+ ratio of the exoskeleton. Higher calcite 

Mg2+:Ca2+ ratios correspond to higher solubility (Morse et al. 2006; Andersson et al. 2008; Chen 

et al. 2008) but also higher strength, as substitution of Mg2+ within the calcium carbonate matrix 

can impact fracture propagation and dislocation motion (Magdans and Gies 2004; Kunitake et al. 

2012; Kunitake et al. 2013). Despite these alterations in mineral content of the cuticle, there were 

no changes in cuticle thickness or micromechanical properties. This suggests that either the 6% 

reduction in calcium content was not sufficient to cause a detectible difference in 

micromechanical properties of the cuticle, or that the elevated magnesium content increased the 

hardness of the mineral resulting in no net change in overall hardness levels. These results also 

highlight that calcium content alone is not a direct predictor of cuticle mechanical or structural 

properties in decapods. In both juvenile red and blue king crabs, elevated calcium content under 

OA conditions was accompanied by diminished microhardness (Coffey et al. 2017). Similarly in 

Tanner crabs, calcium content in the claws was unchanged despite decreased microhardness, 

whereas in the carapace a decrease in calcium content did not affect microhardness (Dickinson et 
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al. 2021). Like the snow crabs in this study, the decreased calcium content in the carapace of 

Tanner crabs was accompanied by an increase in magnesium content and FTIR spectroscopy 

showed a shift in the mineral phase of calcium carbonate from amorphous calcium carbonate to 

calcite (Dickinson et al. 2021). It may be, then, that the disconnect between calcium and 

hardness is at least partially explained by the mineral phase of calcium carbonate. These findings 

highlight that researchers should be cautious in making inferences regarding cuticle strength or 

mechanical properties in decapods based on calcium content measurements alone. 

The finding that exoskeletal properties of adult snow crabs are not particularly susceptible to OA 

is unexpected because of the apparent vulnerability of the Tanner crab (Chionoecetes bairdi), the 

snow crab’s close relative, to OA. Both the snow crab and the Tanner crab have life expectancies 

upwards of 10 years, live at similar depths, and endure the highly variable pH fluctuations of the 

Bering Sea for the duration of their relatively long lives. A similar long-term OA exposure 

experiment showed that adult Tanner crabs experienced 15% and 31% reductions in the total 

thickness in the claw and carapace, respectively, in response to exposure to pH levels of 7.5 

(Dickinson et al. 2021). Reduced pH also caused decreased endocuticle hardness of adult Tanner 

crabs, whereas the micromechanical properties of snow crabs were unaffected by pH treatment 

level. Although the mechanisms driving observed differences between Chionoecetes species in 

susceptibility to OA remain unknown, it is worth noting that the species-specific differences 

described here mirror those reported for other life stages in these species. For example, in Tanner 

crab, OA exposure during oogenesis resulted in a 70% reduction in hatch success (Swiney et al. 

2016). OA increased mortality and reduced growth and calcification in juvenile Tanner crabs 

(Long et al., 2013a), and in adults, increased hemocyte mortality and decreased intracellular pH 

were observed after OA exposure (Meseck et al. 2016). In contrast, hatching success, survival, 

and embryonic morphology were unaffected by OA in snow crabs, and both direct and carryover 

effects of OA on larval survival, morphology, and calcification were negligible (Long et al. 

2022a & b). The findings of this study paired with previous findings support that snow crabs, 

although morphologically and ecologically similar to the Tanner crabs, are better equipped for 

survival in extreme pH conditions. 

20 



 

 

             

              

                

                

               

             

                     

               

                

                   

                   

               

                

               

              

                 

                 

                  

              

                 

              

               

                

                

              

          

      

  

             

                 

                

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

Although there was little variation in exoskeletal properties among pH treatments, exoskeletal 

properties varied dramatically among body regions. We found that claws were harder and 

thicker, and that they contained more calcium but less magnesium than the carapace and legs. 

The exoskeleton of the legs was thinner than other body regions but contained substantially more 

magnesium. These observations add to a growing body of evidence that the structural and 

mechanical properties of the crustacean exoskeleton vary, often dramatically, with function (e.g., 

Boßelmann et al. 2007; Chen et al. 2008; Politi et al. 2019; deVries et al. 2021; Inoue et al. 2021; 

Wang et al. 2022). Such variation in exoskeletal properties among body regions has been 

observed both in animals assessed directly after field-collection (e.g. Steffel et al. 2019; Rosen et 

al. 2020) as well as those exposed to laboratory conditions for months to years (e.g. Coffey et al. 

2017; Dickinson et al. 2021; deVries et al. 2021; Lowder et al. 2022). Here, claws were found to 

be hard and resistant to mechanical deformation within the exo- and endocuticle, making them 

resistant to wear and abrasion and able to withstand high mechanical force from predatory or 

defensive uses. Though thin, the outer mineralized layer of the legs, the exocuticle, showed 

microhardness substantially higher than the inner endocuticle (consistent with Chen et al. 2008), 

with exocuticle microhardness comparable to that of the claws. As the most distal segment of the 

leg, the dactylopodite is likely to experience almost constant wear and abrasion as they are the 

segment of the leg that comes in contact with the sea floor; the enhanced microhardness of the 

leg exocuticle found here supports greater resistance to wear and abrasion. Elevated magnesium 

content in the legs may contribute to elevated hardness (Kunitake et al. 2012; 2013) and may 

also stabilize amorphous calcium carbonate (ACC) within the exoskeleton (Weiner et al. 2003; 

Addadi et al. 2003). Calcium content, magnesium content, and thickness of the carapace was 

intermediate to the legs and claws, with consistently lower hardness as compared to the claws. 

Although the carapace must protect the internal organs, it must also be sufficiently flexible and 

elastic to enable movement (Boßelmann et al. 2007). Altogether, the body region specific 

differences observed support highly-adaptable mineralization processes within the Crustacea 

(Lowenstam and Weiner 1989). 

In terms of body-region-specific differences in exoskeletal properties, one surprising finding was 

the separation of left and right claws in multivariate analyses. The right claw was thicker but 

exhibited lower hardness in both the exo- and endocuticle compared with the left claw. This 
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exoskeletal asymmetry is unusual because, unlike crab species that display strong claw 

dimorphism, snow crabs appear by eye to have bilateral chelal symmetry. For example, fiddler 

crabs not only have evident bilateral chelal asymmetry, but the right and left claws differ in 

function (Pope et al. 2000; Darnell et al. 2011). The major claw of the male fiddler crab 

functions as an ornament and weapon in courtship contests, whereas the minor claw is used for 

feeding, foraging, and grooming (Crane 1966; Christy 1982). Although the male fiddler crab 

serves as an extreme example, chelal asymmetry as a result of handedness, or heterochely, is 

well-developed and immediately apparent in many decapod species (Vermeij 1977; Abby-Kalio 

and Warner 1989; Seed and Hughes 1997; Schenk and Wainwright 2001). Behavioral bias in 

claw preference for performing various activities can induce morphological asymmetries in 

Brachyrun crabs, resulting in species-wide heterochely (Smith and Palmer 1994). There is very 

little evolutionary insight into the heterochely of snow crabs, as handedness in other members of 

the genus Chionoecetes, C. japonicus and C. bairdi, has not been examined. The basis for 

varying chela micromechanical properties in this species may very well be attributed to 

functional differences between the two claws (Govid et al. 1985; Herrick 1895). Experiments 

assessing the snow crab’s behavioral responses to predator and prey presence would be 

beneficial in gaining more insight on these aspects of Chionoecetes behavior. 

CONCLUSIONS 

Exoskeletal structural integrity is critical in crustacean locomotive, predatory, and defensive 

activities. Although decreased pH levels can cause exoskeletal dissolution in a number of 

crustaceans (Pansch et al. 2014; Nardone et al. 2018; Bednaršek et al. 2020; Dickinson et al. 

2021), adult snow crab, C. opilio, display resilience to predicted changes in seawater chemistry, 

at least under the experimental conditions tested here. These findings suggest that snow crab 

populations in the eastern Bering Sea may not be drastically affected by ocean acidification, 

although studies with a more extreme reduction in pH (i.e., below 7.5) are necessary to fully 

assess their physiological tolerance. This study also revealed a dichotomy within the 

Chionoecetes genus. The susceptibility of Tanner crabs to exoskeletal dissolution was 

particularly high (Dickinson et al. 2021), whereas snow crabs did not experience any apparent 

cuticle dissolution when exposed to reduced seawater pH (down to pH 7.5). This is despite the 
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fact that C. bairdi and C. opilio reside in the same depths of the eastern Bering Sea and have 

similar life histories. Additional ecophysiological assessments of these closely related species are 

needed to determine the mechanisms driving the differences between these species. 
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